CVE-2026-23198
KVM: Don't clobber irqfd routing type when deassigning irqfd
Description
In the Linux kernel, the following vulnerability has been resolved: KVM: Don't clobber irqfd routing type when deassigning irqfd When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86 and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to handle a concurrent routing update, verify that the irqfd is still active before consuming the routing information. As evidenced by the x86 and arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below), clobbering the entry type without notifying arch code is surprising and error prone. As a bonus, checking that the irqfd is active provides a convenient location for documenting _why_ KVM must not consume the routing entry for an irqfd that is in the process of being deassigned: once the irqfd is deleted from the list (which happens *before* the eventfd is detached), it will no longer receive updates via kvm_irq_routing_update(), and so KVM could deliver an event using stale routing information (relative to KVM_SET_GSI_ROUTING returning to userspace). As an even better bonus, explicitly checking for the irqfd being active fixes a similar bug to the one the clobbering is trying to prevent: if an irqfd is deactivated, and then its routing is changed, kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing() (because the irqfd isn't in the list). And so if the irqfd is in bypass mode, IRQs will continue to be posted using the old routing information. As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type results in KVM incorrectly keeping the IRQ in bypass mode, which is especially problematic on AMD as KVM tracks IRQs that are being posted to a vCPU in a list whose lifetime is tied to the irqfd. Without the help of KASAN to detect use-after-free, the most common sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to the memory for irqfd structure being re-allocated and zeroed, resulting in irqfd->irq_bypass_data being NULL when read by avic_update_iommu_vcpu_affinity(): BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:amd_iommu_update_ga+0x19/0xe0 Call Trace: <TASK> avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd] __avic_vcpu_load+0xf4/0x130 [kvm_amd] kvm_arch_vcpu_load+0x89/0x210 [kvm] vcpu_load+0x30/0x40 [kvm] kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm] kvm_vcpu_ioctl+0x571/0x6a0 [kvm] __se_sys_ioctl+0x6d/0xb0 do_syscall_64+0x6f/0x9d0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x46893b </TASK> ---[ end trace 0000000000000000 ]--- If AVIC is inhibited when the irfd is deassigned, the bug will manifest as list corruption, e.g. on the next irqfd assignment. list_add corruption. next->prev should be prev (ffff8d474d5cd588), but was 0000000000000000. (next=ffff8d8658f86530). ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:31! Oops: invalid opcode: 0000 [#1] SMP CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:__list_add_valid_or_report+0x97/0xc0 Call Trace: <TASK> avic_pi_update_irte+0x28e/0x2b0 [kvm_amd] kvm_pi_update_irte+0xbf/0x190 [kvm] kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm] irq_bypass_register_consumer+0xcd/0x170 [irqbypa ---truncated---
INFO
Published Date :
Feb. 14, 2026, 5:15 p.m.
Last Modified :
Feb. 14, 2026, 5:15 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2026-23198
vulnerability.
Even if cvefeed.io is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Apply the Linux kernel patch for KVM.
- Ensure IRQFD routing information is validated.
- Check IRQFD activity before consuming routing data.
- Avoid clobbering IRQFD routing types.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2026-23198.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2026-23198 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2026-23198
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2026-23198 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2026-23198 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Feb. 14, 2026
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: KVM: Don't clobber irqfd routing type when deassigning irqfd When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86 and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to handle a concurrent routing update, verify that the irqfd is still active before consuming the routing information. As evidenced by the x86 and arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below), clobbering the entry type without notifying arch code is surprising and error prone. As a bonus, checking that the irqfd is active provides a convenient location for documenting _why_ KVM must not consume the routing entry for an irqfd that is in the process of being deassigned: once the irqfd is deleted from the list (which happens *before* the eventfd is detached), it will no longer receive updates via kvm_irq_routing_update(), and so KVM could deliver an event using stale routing information (relative to KVM_SET_GSI_ROUTING returning to userspace). As an even better bonus, explicitly checking for the irqfd being active fixes a similar bug to the one the clobbering is trying to prevent: if an irqfd is deactivated, and then its routing is changed, kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing() (because the irqfd isn't in the list). And so if the irqfd is in bypass mode, IRQs will continue to be posted using the old routing information. As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type results in KVM incorrectly keeping the IRQ in bypass mode, which is especially problematic on AMD as KVM tracks IRQs that are being posted to a vCPU in a list whose lifetime is tied to the irqfd. Without the help of KASAN to detect use-after-free, the most common sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to the memory for irqfd structure being re-allocated and zeroed, resulting in irqfd->irq_bypass_data being NULL when read by avic_update_iommu_vcpu_affinity(): BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:amd_iommu_update_ga+0x19/0xe0 Call Trace: <TASK> avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd] __avic_vcpu_load+0xf4/0x130 [kvm_amd] kvm_arch_vcpu_load+0x89/0x210 [kvm] vcpu_load+0x30/0x40 [kvm] kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm] kvm_vcpu_ioctl+0x571/0x6a0 [kvm] __se_sys_ioctl+0x6d/0xb0 do_syscall_64+0x6f/0x9d0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x46893b </TASK> ---[ end trace 0000000000000000 ]--- If AVIC is inhibited when the irfd is deassigned, the bug will manifest as list corruption, e.g. on the next irqfd assignment. list_add corruption. next->prev should be prev (ffff8d474d5cd588), but was 0000000000000000. (next=ffff8d8658f86530). ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:31! Oops: invalid opcode: 0000 [#1] SMP CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025 RIP: 0010:__list_add_valid_or_report+0x97/0xc0 Call Trace: <TASK> avic_pi_update_irte+0x28e/0x2b0 [kvm_amd] kvm_pi_update_irte+0xbf/0x190 [kvm] kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm] irq_bypass_register_consumer+0xcd/0x170 [irqbypa ---truncated--- Added Reference https://git.kernel.org/stable/c/2284bc168b148a17b5ca3b37b3d95c411f18a08d Added Reference https://git.kernel.org/stable/c/4385b2f2843549bfb932e0dcf76bf4b065543a3c Added Reference https://git.kernel.org/stable/c/6d14ba1e144e796b5fc81044f08cfba9024ca195 Added Reference https://git.kernel.org/stable/c/959a063e7f12524bc1871ad1f519787967bbcd45 Added Reference https://git.kernel.org/stable/c/b4d37cdb77a0015f51fee083598fa227cc07aaf1 Added Reference https://git.kernel.org/stable/c/b61f9b2fcf181451d0a319889478cc53c001123e Added Reference https://git.kernel.org/stable/c/ff48c9312d042bfbe826ca675e98acc6c623211c